In 2014, I was living in a small apartment a few miles south of Stanford University. I wanted to improve my quality of life by purchasing a home in the same community. Unfortunately, housing prices in the area were accelerating upwards and I couldn’t find anything affordable1. It was time to consider a move to a less expensive locale. When an opportunity arose to purchase an undeveloped property in southern Rhode Island, I jumped on it. This looked like a great place to build an interesting new house.



Conceptual drawing of Maynard residence
Conceptual drawing of Maynard residence
Credit: Steve Baczek


A New Approach

I wanted my new home to be comfortable, quiet, and energy-efficient. Beyond that, I was open to any and all ideas. After a tour of a home site with Stephen DeMetrick, an innovative local builder, I decided to design and build a house that achieves (and hopefully exceeds) a very stringent set of requirements called the Passive House building standard. I assembled a team of highly-qualified professionals who understood what we wanted to do and were up to speed on the latest advances in science-based design and construction methods.

A Passive House typically uses 80-90% less energy than a conventional American home — hard to believe, but true. The air inside the home is clean and safe, with very little temperature variation (no hot or cold spots). Occupants aren’t bothered by pollen, excessive humidity, or outside noise.

How does a Passive House achieve this?

  • Passive solar heating. The primary source of heat during the cooler months is sunlight that enters through large, south-facing windows. Wide eaves and other shading techniques are used to minimize solar gain during the warmer months.

  • Superinsulation. A passive house uses insulation with very high R-values around the main envelope, including the foundation.

  • Minimal thermal bridging. Passive house designers try very hard to eliminate thermal bridging inside the main envelope. Thermal bridging occurs when a conductive material extends from within the main envelope to the outside air.

  • No leaks! The main envelope is virtually airtight, preventing infiltration of outside air and loss of conditioned air.

  • High-performance windows and doors. European-designed windows and doors provide exceptional thermal and acoustical insulation. Features include triple glazing, multiple gaskets, warm-edge spacers, and a multi-point locking system to ensure a tight seal.

  • Whole-house ventilation. An independent ventilation system exchanges the air inside the main envelope every few hours, and includes subsystems for air filtration, energy recovery, and dehumidification.


Powered by the Sun

To reduce my dependence on power sources that emit greenhouse gases, we decided to generate power on site using a photovoltaic system from Newport Solar. An array of rooftop solar panels generate up to 9000 watts during daylight hours to power the house and recharge a battery storage system manufactured by Sonnen USA. The Sonnen unit provides power to the house at night. In addition, it powers essential loads such as ventilation, HVAC, and refrigeration when the grid is offline.2


On the Need for Coherence

A 2017 article in Current Affairs magazine asserted that most contemporary architecture is poorly designed, unattractive, and offends our sense of aesthetics because it lacks coherence with its surroundings.3 The lead architect and I spent a great deal of time thinking about how my house would fit into the surrounding environment and complement the natural beauty there.


The Project Team


Photos

During the construction of the house, I took photos every few days.


Map and Directions



Footnotes

  1. Before moving to Rhode Island, I lived in an in-law apartment in the California town of Los Altos, an upscale Silicon Valley bedroom community. According to Trulia, the median price of properties for sale in this town is now over $3,000,000!

  2. As manufacturing costs come down, I expect residential energy storage systems to grow in popularity. Everyone would benefit from the ability to store energy on site for use during power outages, instead of relying on noisy gas-powered generators.

  3. In terms of coherence with its surroundings, most contemporary architecture is ugly. Some of it is very ugly. The worst examples attain a degree of ugliness that can only be the result of special effort.

    A sense of place depends on every element in that place working together. The streets of the Beacon Hill neighborhood in Boston are beautiful because the many different elements are aesthetically unified. On the other hand, Frank Lloyd Wright’s impressive Guggenheim Museum doesn’t bear any actual relationship to its surroundings; it could have been placed anywhere.

    But it can get much worse. The Tour Montparnasse in Paris is horrifying because it doesn’t flow with the surrounding buildings and draws attention to itself. When a building like Kunsthaus Graz in Austria is placed in the middle of an old village, the entire fabric of the village is disrupted.